Jeśli wagi nie są wyrażone w procentach (godziny lub punkty ), należy również podzielić przez sumę wag: Klasa ważona = ( w 1 × g 1 + w 2 × g 2 + w 3 × g 3 + ) / ( w 1 + w 2 + w 3 + ) Przykład. Kurs matematyki za 3 punkty z oceną 80. 5 punktów Kurs biologii z oceną 90. 2 punkty Historia z oceną 72. Średnią ważoną Zauważmy teraz, że ciąg jest również ciągiem arytmetycznym, ale o różnicy dwa razy większej niż różnica ciągu .Możemy zatem skorzystać ze wzoru na początkowych wyrazów ciągu arytmetycznego (korzystamy z najprostszej do zapamiętania postaci tego wzoru: (pierwszy+ostatni)/2 razy liczba wyrazów) Oblicz wariancję ,odchylenie standardowe i odchylenie przeciętne (d) czasu przeznaczonego codziennie na prace domowa i spędzonego w szkole Tabela: czas (h): 8,9,10,11,12 liczba uczniów: 5,5,20,5,5 Answer Oblicz sumę oraz różnice podanych długości: a) 3 m 75 cm i 2 m 30 cm b) 7 cm 3 mm i 4 cm i 5 mm c) 3 km 300 m i 800 m d) 2 km 400 m i 1 km 900m Przypominam: 1 km= 100 m 1 m=100 cm 1 cm=10 mm Proszę o odpowiedz,muszę to mieć na jutro.Będę bardzo wdzięczna. Witam proszę o pomoc oblicz sumę i różnicę: 0,8-13/40=, 2i5/6-1,15=,3i3/4-2,548= More Questions From This User See All Gasiorowskaane September 2019 | 0 Replies Rozwiązanie zadania z matematyki: Oblicz sumę n początkowych wyrazów ciągu (a_n) określonego dla n≥ 1, w którym a_1=3a_{n+1}=10a_n+3,{ dla n≥ 1}., Różne, 4499198 Największy internetowy zbiór zadań z matematyki mNuMy. Najłatwiejsze w sumowaniu są szeregi geometryczne, tzn. szeregi postaci: Dla |q| 1 szereg geometryczny jest rozbieżny. Dla innych szeregów dokładne obliczenie sumy jest zazwyczaj zadaniem bardzo trudnym, dlatego przeważnie ograniczamy się jedynie do badania ich zbieżności. Okazuje się, że czasami można we w miarę prosty sposób obliczyć sumę szeregu liczbowego, przy wykorzystaniu pewnych sprytnych metod. Metody te zostały omówione w rozwiązaniach wideo poniższych zadań. 1. a[1]=9, r=4a[n]=81 ---> 9+(n-1)*4=81 ---> n=...?Wzór na sumę n wyrazów Tutaj a=b P=a^2/2 -----> a=√(2P) =√8 =2√23. 3*8*11=...?4. a^2+b^2+2 = 2a+2ba^2-2a+1 +b^2-2b+1)=0(a-1)^2+(b-1)^2=0. To możliwe tylko, gdy a-1=0i b-1=05. x^2+6x+9 +y^2 -8y+16 = -21+9+16(x+3)^2 +(y-4)^2 = 4S=(-3,4), r=2 a) x= -3 -2, b) x= -3+2Czy wszystko jasne? Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów ... ciągu arytmetycznego o numerach nieparzystych, jeżeli jedenasty wyraz tego ciągu jest równy 20. Zordon Użytkownik Posty: 4977 Rejestracja: 12 lut 2008, o 21:42 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 75 razy Pomógł: 909 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Zordon » 26 sie 2009, o 17:44 Za mało danych, czy na pewno to jest całe polecenie? Inkwizytor Użytkownik Posty: 4105 Rejestracja: 16 maja 2009, o 15:08 Płeć: Mężczyzna Lokalizacja: Poznań Podziękował: 1 raz Pomógł: 427 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Inkwizytor » 26 sie 2009, o 18:21 220 Zordon mała podpórka: \(\displaystyle{ a_{n-1} + a_n + a_{n+1} = 3a_n}\) Zordon Użytkownik Posty: 4977 Rejestracja: 12 lut 2008, o 21:42 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 75 razy Pomógł: 909 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Zordon » 26 sie 2009, o 20:09 ups, źle przeczytałem polecenie, zatem wystarczy jednak danych Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 27 sie 2009, o 13:49 Inkwizytor pisze:220 Zordon mała podpórka: \(\displaystyle{ a_{n-1} + a_n + a_{n+1} = 3a_n}\) Możesz rozwinąć swoją myśl? Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 27 sie 2009, o 14:13 \(\displaystyle{ a_n+a_n=a_{n-1}+a_{n+1}=a_{n-3}+a_{n+3}=\ldots=a_{n-k}+a_{n+k} \\ \\ \\ \sum_{k=1}^{11} a_{2k-1}=a_1+a_3+a_5+ \ldots + a_{17}+a_{19}+a_{21}= \\ \\ (a_1+a_{21})+(a_3+a_{19})+(a_5+a_{17})+ \ldots +(a_9+a_{13})+a_{11}=\ldots}\) Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 28 sie 2009, o 00:36 Dasio11 pisze:\(\displaystyle{ a_n+a_n=a_{n-1}+a_{n+1}=a_{n-3}+a_{n+3}=\ldots=a_{n-k}+a_{n+k} \\ \\ \\ \sum_{k=1}^{11} a_{2k-1}=a_1+a_3+a_5+ \ldots + a_{17}+a_{19}+a_{21}= \\ \\ (a_1+a_{21})+(a_3+a_{19})+(a_5+a_{17})+ \ldots +(a_9+a_{13})+a_{11}=\ldots}\) A da się jakoś inaczej, nie używając wzoru Newtona? czeslaw Użytkownik Posty: 2156 Rejestracja: 5 paź 2008, o 22:12 Płeć: Mężczyzna Lokalizacja: Politechnika Wrocławska Podziękował: 44 razy Pomógł: 317 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: czeslaw » 28 sie 2009, o 00:45 Jakiego wzoru Newtona? :S Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 28 sie 2009, o 09:02 To moje to nie jest wzór Newtona, tylko: 1. Napisanie, co i do czego właściwie i konkretnie dane jest nam dodać; 2. Poprzestawianie składników w myśl przemienności dodawania; 3. Pogrupowanie ich w pary; 4. Zauważenie, że suma każdej pary jest stała i nam znana ( jak również ostatni wyraz, który nie ma pary). A wzór Newtona, lub bardziej popularnie: dwumian Newtona - to wzór opisujący dwumian podniesiony do potęgi \(\displaystyle{ n}\)-tej. Chyba że jest jeszcze jakiś inny :[ Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 28 sie 2009, o 15:27 Chodziło mi o to , jak to zrobić, znając metody na poziomie klasy 2 liceum \(\displaystyle{ a _{1}=0 ?}\) Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 28 sie 2009, o 15:43 Właśnie w ten sposób. Zauważ, że: \(\displaystyle{ a_{n+k}+a_{n-k}=\left( a_1+(n+k) \cdot r \right) + \left( a_1 +(n-k) \cdot r \right) = 2 \cdot a_1+2n \cdot r+k \cdot r-k \cdot r=2a_1+2nr=2(a_1+n \cdot r)=2 \cdot a_n}\) Na tym opierają się moje powyższe obliczenia, przypatrz się dobrze \(\displaystyle{ a_1}\) jest niewiadomą, jednak nie potrzeba go znać, bo i tak po obliczeniu zostają tylko \(\displaystyle{ a_{11}}\), który jest dany. oblicz sumę elwira: oblicz sumę: 13,5 − 16,5 + 19,5 − 22,5 + ... + 3019,5 − 3022,5 + 3025,5 9 sty 19:06 Aga: (13,5+16,5+...+3025,5)+(−16,6−22,5−...−3022,5) Oblicz oddzielnie sumy dwóch ciągów arytmetycznych. 9 sty 19:10 a1=5 an=105 r=4 an=a1+(n-1)r 105=5+(n-1)4 105=5+4n-4 105=1+4n 104=4n n=26 czyli podanych wyrazow jest 26. wystarczy zastosowac wzor na sume coagu arytm. S26=(a1+an)n/2=(5+105)26/2=110*13=1430 jareczka Expert Odpowiedzi: 2635 0 people got help

oblicz sumę 5 9 13